Only the ones I think is significant are recorded here
Convert $\cup$ and $\cap$, and put $^c$ into the brackets.
$$ (\bigcup \limits^n_{i=1}E_i)^c = \bigcap \limits^n_{i=1}E^c_i $$
$$ (\bigcap \limits^n_{i=1}E_i)^c = \bigcup \limits^n_{i=1}E^c_i $$
$\mathbb P(A^c) = 1 - \mathbb P(A)$
Rule of total probability:
If $A, B \subseteq \Omega$ are events in the sample space $\Omega$, then
$\mathbb P(A) = \mathbb P(A\cap B) + \mathbb P(A \cap B^c)$
$A = A \cap \Omega = A \cap(B\cup B^c) = (A \cap B) \cup (A \cap B^c)$
Generalization of the rule of total probability:
More generally, if a finite collection of pairwise mutually exclusive events $\{C_1, C_2, \cdots, C_n\}$ satisfy
$$ C_1 \cup C_2 \cup \cdots \cup C_n = \Omega $$
then, for any event $A \subseteq \Omega$,
$$ \mathbb P(A) = \mathbb P (A \cap C_1) + \mathbb P (A \cap C_2) + \cdots + P (A \cap C_n) $$
Monotonicity:
If $A,B \subseteq \Omega$ are events in the sample space $\Omega$ and $A \subseteq B$, then
$$ \mathbb P(A) \le \mathbb P(B) $$
Rule of addition:
If $A, B \subseteq \Omega$ are events in the sample space $\Omega$, then
$$ \mathbb P(A\cup B) = \mathbb P(A) + \mathbb P(B) - \mathbb P(A\cap B) $$