Only the ones I think is significant are recorded here

1.1.3 Properties of set operations

Significant equations:

DeMorgan’s Law:

Convert $\cup$ and $\cap$, and put $^c$ into the brackets.

$$ (\bigcup \limits^n_{i=1}E_i)^c = \bigcap \limits^n_{i=1}E^c_i $$

$$ (\bigcap \limits^n_{i=1}E_i)^c = \bigcup \limits^n_{i=1}E^c_i $$


1.4 Some useful results on probability

Theorem:

  1. $\mathbb P(A^c) = 1 - \mathbb P(A)$

  2. Rule of total probability:

    If $A, B \subseteq \Omega$ are events in the sample space $\Omega$, then

    $\mathbb P(A) = \mathbb P(A\cap B) + \mathbb P(A \cap B^c)$

    $A = A \cap \Omega = A \cap(B\cup B^c) = (A \cap B) \cup (A \cap B^c)$

  3. Generalization of the rule of total probability:

    More generally, if a finite collection of pairwise mutually exclusive events $\{C_1, C_2, \cdots, C_n\}$ satisfy

    $$ C_1 \cup C_2 \cup \cdots \cup C_n = \Omega $$

    then, for any event $A \subseteq \Omega$,

    $$ \mathbb P(A) = \mathbb P (A \cap C_1) + \mathbb P (A \cap C_2) + \cdots + P (A \cap C_n) $$

  4. Monotonicity:

    If $A,B \subseteq \Omega$ are events in the sample space $\Omega$ and $A \subseteq B$, then

    $$ \mathbb P(A) \le \mathbb P(B) $$

  5. Rule of addition:

    If $A, B \subseteq \Omega$ are events in the sample space $\Omega$, then

    $$ \mathbb P(A\cup B) = \mathbb P(A) + \mathbb P(B) - \mathbb P(A\cap B) $$