Review of (General) Linear Model
*Generalized Linear Models
Linear Regression as GLM
Normal Distribution as an Exponential Family
Recall:
$$
f(y|\theta,\phi)=exp\{\frac{y\theta-b(\theta)}{\phi}+c(y,\phi)\}
$$
For Normal Distribution
$$
f(y|\mu,\sigma^2)=exp\{\frac{\mu y-\frac{1}2\mu^2}{\sigma^2}-\frac{y^2}{2\sigma^2}-\frac{1}2ln(2\pi\sigma^2)\}
$$
where
- $\theta=\mu$
- $\phi=\sigma^2$
- $b(\theta)=\frac{1}2\mu^2$
- $c(y,\phi)=-\frac{y^2}{2\sigma^2}-\frac{1}2ln(2\pi\sigma^2)$


*(All the 3 equations above are equivalent)
And
- $E(y)=b'(\theta)=\mu$
- $var(y)=b''(\theta)\phi=\sigma^2$
Moments